Cargando…
Cluster Analysis of Cell Nuclei in H&E-Stained Histological Sections of Prostate Cancer and Classification Based on Traditional and Modern Artificial Intelligence Techniques
Biomarker identification is very important to differentiate the grade groups in the histopathological sections of prostate cancer (PCa). Assessing the cluster of cell nuclei is essential for pathological investigation. In this study, we present a computer-based method for cluster analyses of cell nu...
Autores principales: | Bhattacharjee, Subrata, Ikromjanov, Kobiljon, Carole, Kouayep Sonia, Madusanka, Nuwan, Cho, Nam-Hoon, Hwang, Yeong-Byn, Sumon, Rashadul Islam, Kim, Hee-Cheol, Choi, Heung-Kook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774423/ https://www.ncbi.nlm.nih.gov/pubmed/35054182 http://dx.doi.org/10.3390/diagnostics12010015 |
Ejemplares similares
-
Region Segmentation of Whole-Slide Images for Analyzing Histological Differentiation of Prostate Adenocarcinoma Using Ensemble EfficientNetB2 U-Net with Transfer Learning Mechanism
por: Ikromjanov, Kobiljon, et al.
Publicado: (2023) -
Densely Convolutional Spatial Attention Network for nuclei segmentation of histological images for computational pathology
por: Islam Sumon, Rashadul, et al.
Publicado: (2023) -
Multi-Features Classification of Prostate Carcinoma Observed in Histological Sections: Analysis of Wavelet-Based Texture and Colour Features
por: Bhattacharjee, Subrata, et al.
Publicado: (2019) -
Traditional stains and modern techniques for demonstrating microorganisms in histology
por: Morris, Gayti B., et al.
Publicado: (2019) -
Impact of H&E Stain Normalization on Deep Learning Models in Cancer Image Classification: Performance, Complexity, and Trade-Offs
por: Madusanka, Nuwan, et al.
Publicado: (2023)