Cargando…
Along the Lines of Nonadditive Entropies: q-Prime Numbers and q-Zeta Functions
The rich history of prime numbers includes great names such as Euclid, who first analytically studied the prime numbers and proved that there is an infinite number of them, Euler, who introduced the function [Formula: see text] , Gauss, who estimated the rate at which prime numbers increase, and Rie...
Autores principales: | Borges, Ernesto P., Kodama, Takeshi, Tsallis, Constantino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774434/ https://www.ncbi.nlm.nih.gov/pubmed/35052086 http://dx.doi.org/10.3390/e24010060 |
Ejemplares similares
-
Medical Applications of Nonadditive Entropies †
por: Tsallis, Constantino, et al.
Publicado: (2023) -
Nonadditive Entropies and Complex Systems
por: Rapisarda, Andrea, et al.
Publicado: (2019) -
Senses along Which the Entropy S(q) Is Unique
por: Tsallis, Constantino
Publicado: (2023) -
Connecting complex networks to nonadditive entropies
por: de Oliveira, R. M., et al.
Publicado: (2021) -
Zeta and q-Zeta Functions and Associated Series and Integrals
por: Srivastava, H M, et al.
Publicado: (2011)