Cargando…

2′-Fucosyllactose Ameliorates Oxidative Stress Damage in d-Galactose-Induced Aging Mice by Regulating Gut Microbiota and AMPK/SIRT1/FOXO1 Pathway

The imbalance of reactive oxygen species is the main cause in aging, accompanied by oxidative stress. As the most abundant in human milk oligosaccharides (HMOs), 2′-Fucosyllactose (2′-FL) has been confirmed to have great properties in immunity regulation and anti-inflammatory. The research on 2′-FL...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jin, Hu, Jia-Qiang, Song, Yu-Jie, Yin, Jia, Wang, Yuan-Yi-Fei, Peng, Bo, Zhang, Bo-Wei, Liu, Jing-Min, Dong, Lu, Wang, Shuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774504/
https://www.ncbi.nlm.nih.gov/pubmed/35053883
http://dx.doi.org/10.3390/foods11020151
Descripción
Sumario:The imbalance of reactive oxygen species is the main cause in aging, accompanied by oxidative stress. As the most abundant in human milk oligosaccharides (HMOs), 2′-Fucosyllactose (2′-FL) has been confirmed to have great properties in immunity regulation and anti-inflammatory. The research on 2′-FL is focused on infants currently, while there is no related report of 2′-FL for the elderly. A d-galactose-induced accelerated aging model was established to explore the protective effect of 2′-FL on the intestines and brain in mice. In this study, 2′-FL significantly reduced oxidative stress damage and inflammation in the intestines of aging mice, potentially by regulating the sirtuin1 (SIRT1)-related and nuclear factor E2-related factor 2 (Nrf2) pathways. In addition, 2′-FL significantly improved the gut mucosal barrier function and increased the content of short-chain fatty acids (SCFAs) in the intestine. The gut microbiota analysis indicated that 2′-FL mainly increased the abundance of probiotics like Akkermansia in aging mice. Moreover, 2′-FL significantly inhibited apoptosis in the brains of aging mice, also increasing the expression of SIRT1. These findings provided a basis for learning the benefits of 2′-FL in the aging process.