Cargando…
Incorporating the Breast Imaging Reporting and Data System Lexicon with a Fully Convolutional Network for Malignancy Detection on Breast Ultrasound
In this study, we applied semantic segmentation using a fully convolutional deep learning network to identify characteristics of the Breast Imaging Reporting and Data System (BI-RADS) lexicon from breast ultrasound images to facilitate clinical malignancy tumor classification. Among 378 images (204...
Autores principales: | Hsieh, Yung-Hsien, Hsu, Fang-Rong, Dai, Seng-Tong, Huang, Hsin-Ya, Chen, Dar-Ren, Shia, Wei-Chung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774546/ https://www.ncbi.nlm.nih.gov/pubmed/35054233 http://dx.doi.org/10.3390/diagnostics12010066 |
Ejemplares similares
-
Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3+
por: Shia, Wei-Chung, et al.
Publicado: (2022) -
Classification of malignant tumours in breast ultrasound using unsupervised machine learning approaches
por: Shia, Wei-Chung, et al.
Publicado: (2021) -
Non-mass lesions on breast ultrasound: why does not the ACR BI-RADS breast ultrasound lexicon add the terminology?
por: Uematsu, Takayoshi
Publicado: (2023) -
Breast imaging reports for malignant lesions: are we maintaining recommended BI-RADS(®) lexicon standards?
por: Masroor, Imrana, et al.
Publicado: (2012) -
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
por: Mendoza, Merlin M., et al.
Publicado: (2021)