Cargando…
Estimating Distributions of Parameters in Nonlinear State Space Models with Replica Exchange Particle Marginal Metropolis–Hastings Method
Extracting latent nonlinear dynamics from observed time-series data is important for understanding a dynamic system against the background of the observed data. A state space model is a probabilistic graphical model for time-series data, which describes the probabilistic dependence between latent va...
Autores principales: | Inoue, Hiroaki, Hukushima, Koji, Omori, Toshiaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774595/ https://www.ncbi.nlm.nih.gov/pubmed/35052141 http://dx.doi.org/10.3390/e24010115 |
Ejemplares similares
-
Directional Metropolis–Hastings updates for posteriors with nonlinear likelihoods
por: Tjelmeland, H, et al.
Publicado: (2004) -
On directional Metropolis Hastings algorithms
por: Eidsvik, J, et al.
Publicado: (2003) -
Stability of noisy Metropolis–Hastings
por: Medina-Aguayo, F. J., et al.
Publicado: (2015) -
Control variates for the Metropolis-Hastings algorithm
por: Hammer, Hugo, et al.
Publicado: (2005) -
On the use of local optimisations within Metropolis-Hastings
por: Tjelmeland, H, et al.
Publicado: (2002)