Cargando…
Deep-Learning Segmentation of Epicardial Adipose Tissue Using Four-Chamber Cardiac Magnetic Resonance Imaging
In magnetic resonance imaging (MRI), epicardial adipose tissue (EAT) overload remains often overlooked due to tedious manual contouring in images. Automated four-chamber EAT area quantification was proposed, leveraging deep-learning segmentation using multi-frame fully convolutional networks (FCN)....
Autores principales: | Daudé, Pierre, Ancel, Patricia, Confort Gouny, Sylviane, Jacquier, Alexis, Kober, Frank, Dutour, Anne, Bernard, Monique, Gaborit, Bénédicte, Rapacchi, Stanislas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774679/ https://www.ncbi.nlm.nih.gov/pubmed/35054297 http://dx.doi.org/10.3390/diagnostics12010126 |
Ejemplares similares
-
COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury
por: Lasbleiz, Adèle, et al.
Publicado: (2021) -
Browning Epicardial Adipose Tissue: Friend or Foe?
por: Doukbi, Elisa, et al.
Publicado: (2022) -
Epicardial fat volume is associated with coronary endothelium-dependent vasomotor response in healthy subjects
por: Gaborit, Bénédicte, et al.
Publicado: (2011) -
Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19
por: Bartoli, Axel, et al.
Publicado: (2022) -
Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root
por: Wei, Wei, et al.
Publicado: (2019)