Cargando…
A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses
We developed a machine learning model based on radiomics to predict the BI-RADS category of ultrasound-detected suspicious breast lesions and support medical decision-making towards short-interval follow-up versus tissue sampling. From a retrospective 2015–2019 series of ultrasound-guided core needl...
Autores principales: | Interlenghi, Matteo, Salvatore, Christian, Magni, Veronica, Caldara, Gabriele, Schiavon, Elia, Cozzi, Andrea, Schiaffino, Simone, Carbonaro, Luca Alessandro, Castiglioni, Isabella, Sardanelli, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774734/ https://www.ncbi.nlm.nih.gov/pubmed/35054354 http://dx.doi.org/10.3390/diagnostics12010187 |
Ejemplares similares
-
Subcategorization of suspicious non-mass-like enhancement lesions(BI-RADS-MRI Category4)
por: Liu, Dandan, et al.
Publicado: (2023) -
Predictive performance of BI-RADS magnetic resonance imaging
descriptors in the context of suspicious (category 4) findings
por: de Almeida, João Ricardo Maltez, et al.
Publicado: (2016) -
Radiomic Applications on Digital Breast Tomosynthesis of BI-RADS Category 4 Calcifications Sent for Vacuum-Assisted Breast Biopsy
por: Favati, Benedetta, et al.
Publicado: (2022) -
Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS
por: Luo, Wei-quan, et al.
Publicado: (2019) -
MRI-Derived Tumour-to-Breast Volume Is Associated with the Extent of Breast Surgery
por: Cozzi, Andrea, et al.
Publicado: (2021)