Cargando…
Synthetic Aperture Radar Image Despeckling Based on Multi-Weighted Sparse Coding
Synthetic aperture radar (SAR) images are inherently degraded by speckle noise caused by coherent imaging, which may affect the performance of the subsequent image analysis task. To resolve this problem, this article proposes an integrated SAR image despeckling model based on dictionary learning and...
Autores principales: | Liu, Shujun, Pu, Ningjie, Cao, Jianxin, Zhang, Kui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774752/ https://www.ncbi.nlm.nih.gov/pubmed/35052122 http://dx.doi.org/10.3390/e24010096 |
Ejemplares similares
-
Imaging with Synthetic Aperture Radar
por: Massonnet, Didier, et al.
Publicado: (2008) -
Multi-antenna synthetic aperture radar
por: Wang, Wen-Qin
Publicado: (2013) -
Despeckling of Ultrasound Images Using Block Matching and SVD in Sparse Representation
por: Reyes-Reyes, Rogelio, et al.
Publicado: (2022) -
Two-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification
por: Zhang, Xinzheng, et al.
Publicado: (2017) -
Synthetic aperture radar polarimetry
por: Van Zyl, Jakob, et al.
Publicado: (2011)