Cargando…
An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications
Autoencoders are a self-supervised learning system where, during training, the output is an approximation of the input. Typically, autoencoders have three parts: Encoder (which produces a compressed latent space representation of the input data), the Latent Space (which retains the knowledge in the...
Autores principales: | Singh, Aman, Ogunfunmi, Tokunbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774760/ https://www.ncbi.nlm.nih.gov/pubmed/35052081 http://dx.doi.org/10.3390/e24010055 |
Ejemplares similares
-
Adaptive Signal Processing and Machine Learning Using Entropy and Information Theory
por: Ogunfunmi, Tokunbo
Publicado: (2022) -
Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches
por: Ogunfunmi, Tokunbo
Publicado: (2006) -
A Flexible Hybrid BCH Decoder for Modern NAND Flash Memories Using General Purpose Graphical Processing Units (GPGPUs)
por: Subbiah, Arul, et al.
Publicado: (2019) -
Speech and audio processing for coding, enhancement and recognition
por: Ogunfunmi, Tokunbo, et al.
Publicado: (2015) -
Autoencoder based blind source separation for photoacoustic resolution enhancement
por: Benyamin, Matan, et al.
Publicado: (2020)