Cargando…
Review of Machine Learning Applications Using Retinal Fundus Images
Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to...
Autores principales: | Jeong, Yeonwoo, Hong, Yu-Jin, Han, Jae-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774893/ https://www.ncbi.nlm.nih.gov/pubmed/35054301 http://dx.doi.org/10.3390/diagnostics12010134 |
Ejemplares similares
-
Fundus autofluorescence applications in retinal imaging
por: Gabai, Andrea, et al.
Publicado: (2015) -
A deep learning-based framework for retinal fundus image enhancement
por: Lee, Kang Geon, et al.
Publicado: (2023) -
Clinical applications of fundus autofluorescence in retinal disease
por: Yung, Madeline, et al.
Publicado: (2016) -
The application of retinal fundus camera imaging in dementia: A systematic review
por: McGrory, Sarah, et al.
Publicado: (2016) -
Automated Glaucoma Screening and Diagnosis Based on Retinal Fundus Images Using Deep Learning Approaches: A Comprehensive Review
por: Zedan, Mohammad J. M., et al.
Publicado: (2023)