Cargando…
A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems
Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted g...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774895/ https://www.ncbi.nlm.nih.gov/pubmed/35052103 http://dx.doi.org/10.3390/e24010076 |
_version_ | 1784636452852727808 |
---|---|
author | Michaelian, Karo Cano Mateo, Ramón Eduardo |
author_facet | Michaelian, Karo Cano Mateo, Ramón Eduardo |
author_sort | Michaelian, Karo |
collection | PubMed |
description | Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum [Formula: see text] nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars. |
format | Online Article Text |
id | pubmed-8774895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87748952022-01-21 A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems Michaelian, Karo Cano Mateo, Ramón Eduardo Entropy (Basel) Article Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum [Formula: see text] nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars. MDPI 2022-01-01 /pmc/articles/PMC8774895/ /pubmed/35052103 http://dx.doi.org/10.3390/e24010076 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Michaelian, Karo Cano Mateo, Ramón Eduardo A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title | A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title_full | A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title_fullStr | A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title_full_unstemmed | A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title_short | A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems |
title_sort | photon force and flow for dissipative structuring: application to pigments, plants and ecosystems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774895/ https://www.ncbi.nlm.nih.gov/pubmed/35052103 http://dx.doi.org/10.3390/e24010076 |
work_keys_str_mv | AT michaeliankaro aphotonforceandflowfordissipativestructuringapplicationtopigmentsplantsandecosystems AT canomateoramoneduardo aphotonforceandflowfordissipativestructuringapplicationtopigmentsplantsandecosystems AT michaeliankaro photonforceandflowfordissipativestructuringapplicationtopigmentsplantsandecosystems AT canomateoramoneduardo photonforceandflowfordissipativestructuringapplicationtopigmentsplantsandecosystems |