Cargando…
Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction
The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a lo...
Autores principales: | Wang, Qiaozheng, Zhang, Xiuguo, Wang, Xuejie, Cao, Zhiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774910/ https://www.ncbi.nlm.nih.gov/pubmed/35052095 http://dx.doi.org/10.3390/e24010069 |
Ejemplares similares
-
DA-LSTM-VAE: Dual-Stage Attention-Based LSTM-VAE for KPI Anomaly Detection
por: Zhao, Yun, et al.
Publicado: (2022) -
CLDTLog: System Log Anomaly Detection Method Based on Contrastive Learning and Dual Objective Tasks
por: Tian, Gaoqi, et al.
Publicado: (2023) -
ConAnomaly: Content-Based Anomaly Detection for System Logs
por: Lv, Dan, et al.
Publicado: (2021) -
LogEvent2vec: LogEvent-to-Vector Based Anomaly Detection for Large-Scale Logs in Internet of Things
por: Wang, Jin, et al.
Publicado: (2020) -
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023)