Cargando…

Attaining Fairness in Communication for Omniscience †

This paper studies how to attain fairness in communication for omniscience that models the multi-terminal compress sensing problem and the coded cooperative data exchange problem where a set of users exchange their observations of a discrete multiple random source to attain omniscience—the state tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Ni, Sadeghi, Parastoo, Smith, David, Rakotoarivelo, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774912/
https://www.ncbi.nlm.nih.gov/pubmed/35052135
http://dx.doi.org/10.3390/e24010109
_version_ 1784636456897085440
author Ding, Ni
Sadeghi, Parastoo
Smith, David
Rakotoarivelo, Thierry
author_facet Ding, Ni
Sadeghi, Parastoo
Smith, David
Rakotoarivelo, Thierry
author_sort Ding, Ni
collection PubMed
description This paper studies how to attain fairness in communication for omniscience that models the multi-terminal compress sensing problem and the coded cooperative data exchange problem where a set of users exchange their observations of a discrete multiple random source to attain omniscience—the state that all users recover the entire source. The optimal rate region containing all source coding rate vectors that achieve omniscience with the minimum sum rate is shown to coincide with the core (the solution set) of a coalitional game. Two game-theoretic fairness solutions are studied: the Shapley value and the egalitarian solution. It is shown that the Shapley value assigns each user the source coding rate measured by their remaining information of the multiple source given the common randomness that is shared by all users, while the egalitarian solution simply distributes the rates as evenly as possible in the core. To avoid the exponentially growing complexity of obtaining the Shapley value, a polynomial-time approximation method is proposed which utilizes the fact that the Shapley value is the mean value over all extreme points in the core. In addition, a steepest descent algorithm is proposed that converges in polynomial time on the fractional egalitarian solution in the core, which can be implemented by network coding schemes. Finally, it is shown that the game can be decomposed into subgames so that both the Shapley value and the egalitarian solution can be obtained within each subgame in a distributed manner with reduced complexity.
format Online
Article
Text
id pubmed-8774912
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87749122022-01-21 Attaining Fairness in Communication for Omniscience † Ding, Ni Sadeghi, Parastoo Smith, David Rakotoarivelo, Thierry Entropy (Basel) Article This paper studies how to attain fairness in communication for omniscience that models the multi-terminal compress sensing problem and the coded cooperative data exchange problem where a set of users exchange their observations of a discrete multiple random source to attain omniscience—the state that all users recover the entire source. The optimal rate region containing all source coding rate vectors that achieve omniscience with the minimum sum rate is shown to coincide with the core (the solution set) of a coalitional game. Two game-theoretic fairness solutions are studied: the Shapley value and the egalitarian solution. It is shown that the Shapley value assigns each user the source coding rate measured by their remaining information of the multiple source given the common randomness that is shared by all users, while the egalitarian solution simply distributes the rates as evenly as possible in the core. To avoid the exponentially growing complexity of obtaining the Shapley value, a polynomial-time approximation method is proposed which utilizes the fact that the Shapley value is the mean value over all extreme points in the core. In addition, a steepest descent algorithm is proposed that converges in polynomial time on the fractional egalitarian solution in the core, which can be implemented by network coding schemes. Finally, it is shown that the game can be decomposed into subgames so that both the Shapley value and the egalitarian solution can be obtained within each subgame in a distributed manner with reduced complexity. MDPI 2022-01-11 /pmc/articles/PMC8774912/ /pubmed/35052135 http://dx.doi.org/10.3390/e24010109 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ding, Ni
Sadeghi, Parastoo
Smith, David
Rakotoarivelo, Thierry
Attaining Fairness in Communication for Omniscience †
title Attaining Fairness in Communication for Omniscience †
title_full Attaining Fairness in Communication for Omniscience †
title_fullStr Attaining Fairness in Communication for Omniscience †
title_full_unstemmed Attaining Fairness in Communication for Omniscience †
title_short Attaining Fairness in Communication for Omniscience †
title_sort attaining fairness in communication for omniscience †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774912/
https://www.ncbi.nlm.nih.gov/pubmed/35052135
http://dx.doi.org/10.3390/e24010109
work_keys_str_mv AT dingni attainingfairnessincommunicationforomniscience
AT sadeghiparastoo attainingfairnessincommunicationforomniscience
AT smithdavid attainingfairnessincommunicationforomniscience
AT rakotoarivelothierry attainingfairnessincommunicationforomniscience