Cargando…
Hidden Dissipation and Irreversibility in Maxwell’s Demon
Maxwell’s demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774989/ https://www.ncbi.nlm.nih.gov/pubmed/35052118 http://dx.doi.org/10.3390/e24010093 |
_version_ | 1784636473697370112 |
---|---|
author | Fontana, Paul W. |
author_facet | Fontana, Paul W. |
author_sort | Fontana, Paul W. |
collection | PubMed |
description | Maxwell’s demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits imposed by the second law. A well-known explanation claiming that information erasure restores second law compliance fails to resolve the paradox because it assumes the second law a priori, and does not predict irreversibility. Instead, a purely mechanical resolution that does not require information theory is presented. The transport fluxes of mass, momentum, and energy involved in the demon’s operation are analyzed and show that they imply “hidden” external work and dissipation. Computing the dissipation leads to a new lower bound on entropy production by the demon. It is strictly positive in all nontrivial cases, providing a more stringent limit than the second law and implying intrinsic thermodynamic irreversibility. The thermodynamic irreversibility is linked with mechanical irreversibility resulting from the spatial asymmetry of the demon’s speed selection criteria, indicating one mechanism by which macroscopic irreversibility may emerge from microscopic dynamics. |
format | Online Article Text |
id | pubmed-8774989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87749892022-01-21 Hidden Dissipation and Irreversibility in Maxwell’s Demon Fontana, Paul W. Entropy (Basel) Article Maxwell’s demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits imposed by the second law. A well-known explanation claiming that information erasure restores second law compliance fails to resolve the paradox because it assumes the second law a priori, and does not predict irreversibility. Instead, a purely mechanical resolution that does not require information theory is presented. The transport fluxes of mass, momentum, and energy involved in the demon’s operation are analyzed and show that they imply “hidden” external work and dissipation. Computing the dissipation leads to a new lower bound on entropy production by the demon. It is strictly positive in all nontrivial cases, providing a more stringent limit than the second law and implying intrinsic thermodynamic irreversibility. The thermodynamic irreversibility is linked with mechanical irreversibility resulting from the spatial asymmetry of the demon’s speed selection criteria, indicating one mechanism by which macroscopic irreversibility may emerge from microscopic dynamics. MDPI 2022-01-06 /pmc/articles/PMC8774989/ /pubmed/35052118 http://dx.doi.org/10.3390/e24010093 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fontana, Paul W. Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title | Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title_full | Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title_fullStr | Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title_full_unstemmed | Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title_short | Hidden Dissipation and Irreversibility in Maxwell’s Demon |
title_sort | hidden dissipation and irreversibility in maxwell’s demon |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774989/ https://www.ncbi.nlm.nih.gov/pubmed/35052118 http://dx.doi.org/10.3390/e24010093 |
work_keys_str_mv | AT fontanapaulw hiddendissipationandirreversibilityinmaxwellsdemon |