Cargando…
Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection
Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagno...
Autores principales: | Al-Hadeethi, Hanan, Abdulla, Shahab, Diykh, Mohammed, Green, Jonathan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774996/ https://www.ncbi.nlm.nih.gov/pubmed/35054242 http://dx.doi.org/10.3390/diagnostics12010074 |
Ejemplares similares
-
An Eigenvalues-Based Covariance Matrix Bootstrap Model Integrated With Support Vector Machines for Multichannel EEG Signals Analysis
por: Al-Hadeethi, Hanan, et al.
Publicado: (2022) -
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
por: Hu, Jianfeng
Publicado: (2017) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022)