Cargando…

Variational Bayesian-Based Improved Maximum Mixture Correntropy Kalman Filter for Non-Gaussian Noise

The maximum correntropy Kalman filter (MCKF) is an effective algorithm that was proposed to solve the non-Gaussian filtering problem for linear systems. Compared with the original Kalman filter (KF), the MCKF is a sub-optimal filter with Gaussian correntropy objective function, which has been demons...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xuyou, Guo, Yanda, Meng, Qingwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775028/
https://www.ncbi.nlm.nih.gov/pubmed/35052143
http://dx.doi.org/10.3390/e24010117
Descripción
Sumario:The maximum correntropy Kalman filter (MCKF) is an effective algorithm that was proposed to solve the non-Gaussian filtering problem for linear systems. Compared with the original Kalman filter (KF), the MCKF is a sub-optimal filter with Gaussian correntropy objective function, which has been demonstrated to have excellent robustness to non-Gaussian noise. However, the performance of MCKF is affected by its kernel bandwidth parameter, and a constant kernel bandwidth may lead to severe accuracy degradation in non-stationary noises. In order to solve this problem, the mixture correntropy method is further explored in this work, and an improved maximum mixture correntropy KF (IMMCKF) is proposed. By derivation, the random variables that obey Beta-Bernoulli distribution are taken as intermediate parameters, and a new hierarchical Gaussian state-space model was established. Finally, the unknown mixing probability and state estimation vector at each moment are inferred via a variational Bayesian approach, which provides an effective solution to improve the applicability of MCKFs in non-stationary noises. Performance evaluations demonstrate that the proposed filter significantly improves the existing MCKFs in non-stationary noises.