Cargando…
Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation
Although adversarial domain adaptation enhances feature transferability, the feature discriminability will be degraded in the process of adversarial learning. Moreover, most domain adaptation methods only focus on distribution matching in the feature space; however, shifts in the joint distributions...
Autores principales: | Xiao, Ting, Fan, Cangning, Liu, Peng, Liu, Hongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775043/ https://www.ncbi.nlm.nih.gov/pubmed/35052070 http://dx.doi.org/10.3390/e24010044 |
Ejemplares similares
-
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
por: Xiao, Liang, et al.
Publicado: (2023) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020)