Cargando…

Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters

Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal features using machine learning algorithms. Methods: A case–control 1:2 study was carried out compromising 378...

Descripción completa

Detalles Bibliográficos
Autores principales: Esteban-Escaño, Javier, Castán, Berta, Castán, Sergio, Chóliz-Ezquerro, Marta, Asensio, César, Laliena, Antonio R., Sanz-Enguita, Gerardo, Sanz, Gerardo, Esteban, Luis Mariano, Savirón, Ricardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775221/
https://www.ncbi.nlm.nih.gov/pubmed/35052094
http://dx.doi.org/10.3390/e24010068
_version_ 1784636532559183872
author Esteban-Escaño, Javier
Castán, Berta
Castán, Sergio
Chóliz-Ezquerro, Marta
Asensio, César
Laliena, Antonio R.
Sanz-Enguita, Gerardo
Sanz, Gerardo
Esteban, Luis Mariano
Savirón, Ricardo
author_facet Esteban-Escaño, Javier
Castán, Berta
Castán, Sergio
Chóliz-Ezquerro, Marta
Asensio, César
Laliena, Antonio R.
Sanz-Enguita, Gerardo
Sanz, Gerardo
Esteban, Luis Mariano
Savirón, Ricardo
author_sort Esteban-Escaño, Javier
collection PubMed
description Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal features using machine learning algorithms. Methods: A case–control 1:2 study was carried out compromising 378 infants, born in the Miguel Servet University Hospital, Spain. Neonatal acidemia was defined as pH < 7.10. Using EFM recording logistic regression, random forest and neural networks models were built to predict acidemia. Validation of models was performed by means of discrimination, calibration, and clinical utility. Results: Best performance was attained using a random forest model built with 100 trees. The discrimination ability was good, with an area under the Receiver Operating Characteristic curve (AUC) of 0.865. The calibration showed a slight overestimation of acidemia occurrence for probabilities above 0.4. The clinical utility showed that for 33% cutoff point, missing 5% of acidotic cases, 46% of unnecessary cesarean sections could be prevented. Logistic regression and neural networks showed similar discrimination ability but with worse calibration and clinical utility. Conclusions: The combination of the variables extracted from EFM recording provided a predictive model of acidemia that showed good accuracy and provides a practical tool to prevent unnecessary cesarean sections.
format Online
Article
Text
id pubmed-8775221
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87752212022-01-21 Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters Esteban-Escaño, Javier Castán, Berta Castán, Sergio Chóliz-Ezquerro, Marta Asensio, César Laliena, Antonio R. Sanz-Enguita, Gerardo Sanz, Gerardo Esteban, Luis Mariano Savirón, Ricardo Entropy (Basel) Article Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal features using machine learning algorithms. Methods: A case–control 1:2 study was carried out compromising 378 infants, born in the Miguel Servet University Hospital, Spain. Neonatal acidemia was defined as pH < 7.10. Using EFM recording logistic regression, random forest and neural networks models were built to predict acidemia. Validation of models was performed by means of discrimination, calibration, and clinical utility. Results: Best performance was attained using a random forest model built with 100 trees. The discrimination ability was good, with an area under the Receiver Operating Characteristic curve (AUC) of 0.865. The calibration showed a slight overestimation of acidemia occurrence for probabilities above 0.4. The clinical utility showed that for 33% cutoff point, missing 5% of acidotic cases, 46% of unnecessary cesarean sections could be prevented. Logistic regression and neural networks showed similar discrimination ability but with worse calibration and clinical utility. Conclusions: The combination of the variables extracted from EFM recording provided a predictive model of acidemia that showed good accuracy and provides a practical tool to prevent unnecessary cesarean sections. MDPI 2021-12-30 /pmc/articles/PMC8775221/ /pubmed/35052094 http://dx.doi.org/10.3390/e24010068 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Esteban-Escaño, Javier
Castán, Berta
Castán, Sergio
Chóliz-Ezquerro, Marta
Asensio, César
Laliena, Antonio R.
Sanz-Enguita, Gerardo
Sanz, Gerardo
Esteban, Luis Mariano
Savirón, Ricardo
Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title_full Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title_fullStr Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title_full_unstemmed Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title_short Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
title_sort machine learning algorithm to predict acidemia using electronic fetal monitoring recording parameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775221/
https://www.ncbi.nlm.nih.gov/pubmed/35052094
http://dx.doi.org/10.3390/e24010068
work_keys_str_mv AT estebanescanojavier machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT castanberta machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT castansergio machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT cholizezquerromarta machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT asensiocesar machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT lalienaantonior machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT sanzenguitagerardo machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT sanzgerardo machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT estebanluismariano machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters
AT savironricardo machinelearningalgorithmtopredictacidemiausingelectronicfetalmonitoringrecordingparameters