Cargando…
Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters
Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal features using machine learning algorithms. Methods: A case–control 1:2 study was carried out compromising 378...
Autores principales: | Esteban-Escaño, Javier, Castán, Berta, Castán, Sergio, Chóliz-Ezquerro, Marta, Asensio, César, Laliena, Antonio R., Sanz-Enguita, Gerardo, Sanz, Gerardo, Esteban, Luis Mariano, Savirón, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775221/ https://www.ncbi.nlm.nih.gov/pubmed/35052094 http://dx.doi.org/10.3390/e24010068 |
Ejemplares similares
-
Prediction of Late-Onset Small for Gestational Age and Fetal Growth Restriction by Fetal Biometry at 35 Weeks and Impact of Ultrasound–Delivery Interval: Comparison of Six Fetal Growth Standards
por: Savirón-Cornudella, Ricardo, et al.
Publicado: (2021) -
Personalized Model to Predict Small for Gestational Age at Delivery Using Fetal Biometrics, Maternal Characteristics, and Pregnancy Biomarkers: A Retrospective Cohort Study of Births Assisted at a Spanish Hospital
por: Dieste-Pérez, Peña, et al.
Publicado: (2022) -
The Effect of Maternal Coagulation Parameters on Fetal Acidemia in Placental Abruption
por: Sugimoto, Atsuko, et al.
Publicado: (2022) -
Screening of severe acute respiratory syndrome coronavirus-2 infection during labor and delivery using polymerase chain reaction and immunoglobulin testing
por: Savirón-Cornudella, Ricardo, et al.
Publicado: (2021) -
Prediction of fetal acidemia in placental abruption
por: Matsuda, Yoshio, et al.
Publicado: (2013)