Cargando…
Increasing neural network robustness improves match to macaque V1 eigenspectrum, spatial frequency preference and predictivity
Task-optimized convolutional neural networks (CNNs) show striking similarities to the ventral visual stream. However, human-imperceptible image perturbations can cause a CNN to make incorrect predictions. Here we provide insight into this brittleness by investigating the representations of models th...
Autores principales: | Kong, Nathan C. L., Margalit, Eshed, Gardner, Justin L., Norcia, Anthony M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775238/ https://www.ncbi.nlm.nih.gov/pubmed/34995280 http://dx.doi.org/10.1371/journal.pcbi.1009739 |
Ejemplares similares
-
Spatial frequency sensitivity in macaque midbrain
por: Chen, Chih-Yang, et al.
Publicado: (2018) -
A Spatial-Frequency Domain Associated Image-Optimization Method for Illumination-Robust Image Matching
por: Liu, Chun, et al.
Publicado: (2020) -
Spatial frequency representation in V2 and V4 of macaque monkey
por: Zhang, Ying, et al.
Publicado: (2023) -
Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation
por: Nayebi, Aran, et al.
Publicado: (2023) -
Symmetry Processing in the Macaque Visual Cortex
por: Audurier, Pauline, et al.
Publicado: (2021)