Cargando…

Quantum Switchboard with Coupled-Cavity Array

The ability to control the flow of quantum information is deterministically useful for scaling up quantum computation. In this paper, we demonstrate a controllable quantum switchboard which directs the teleportation protocol to one of two targets, fully dependent on the sender’s choice. Importantly,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mok, Wai-Keong, Kwek, Leong-Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775243/
https://www.ncbi.nlm.nih.gov/pubmed/35052162
http://dx.doi.org/10.3390/e24010136
Descripción
Sumario:The ability to control the flow of quantum information is deterministically useful for scaling up quantum computation. In this paper, we demonstrate a controllable quantum switchboard which directs the teleportation protocol to one of two targets, fully dependent on the sender’s choice. Importantly, the quantum switchboard also acts as a optimal quantum cloning machine, which allows the receivers to recover the unknown quantum state with a maximal fidelity of [Formula: see text]. This protects the system from the complete loss of quantum information in the event that the teleportation protocol fails. We also provide an experimentally feasible physical implementation of the proposal using a coupled-cavity array. The proposed switchboard can be utilized for the efficient routing of quantum information in a large quantum network.