Cargando…
A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition
Hand gesture recognition tasks based on surface electromyography (sEMG) are vital in human-computer interaction, speech detection, robot control, and rehabilitation applications. However, existing models, whether traditional machine learnings (ML) or other state-of-the-arts, are limited in the numbe...
Autores principales: | Xu, Pufan, Li, Fei, Wang, Haipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775254/ https://www.ncbi.nlm.nih.gov/pubmed/35051235 http://dx.doi.org/10.1371/journal.pone.0262810 |
Ejemplares similares
-
Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture
por: Sandoval-Espino, Jorge Arturo, et al.
Publicado: (2022) -
A novel hand gesture recognition method based on 2-channel sEMG
por: Yu, Hailong, et al.
Publicado: (2018) -
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019)