Cargando…

Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages

In this study, papain-generated casein hydrolysates (CH) with a degree of hydrolysis of 13.7% were subjected to a papain-mediated plastein reaction in the absence or presence of one of the exogenous amino acids—Gly, Pro, and Hyp—to prepare four plastein modifiers, or mixed with one of three amino ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yun-Jiao, Zhao, Xin-Huai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775256/
https://www.ncbi.nlm.nih.gov/pubmed/35053927
http://dx.doi.org/10.3390/foods11020196
_version_ 1784636541803429888
author Shi, Yun-Jiao
Zhao, Xin-Huai
author_facet Shi, Yun-Jiao
Zhao, Xin-Huai
author_sort Shi, Yun-Jiao
collection PubMed
description In this study, papain-generated casein hydrolysates (CH) with a degree of hydrolysis of 13.7% were subjected to a papain-mediated plastein reaction in the absence or presence of one of the exogenous amino acids—Gly, Pro, and Hyp—to prepare four plastein modifiers, or mixed with one of three amino acids to prepare three mixtures. The assay results confirmed that the reaction reduced free NH(2) for the modifiers and caused amino acid incorporation and peptide condensation. When RAW264.7 macrophages were exposed to the CH, modifiers, and mixtures, these samples promoted macrophage growth and phagocytosis in a dose-dependent manner. In addition, the CH shared similar activity in the cells as the mixtures, while the modifiers (especially the PCH-Hyp prepared with Hyp addition) exerted higher potential than CH, the mixtures, and PCH (the modifier prepared without amino acid addition). The plastein reaction thus enhanced CH bioactivity in the cells. When RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS), the inflammatory cells produced more lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) formation, and caused more four inflammatory mediators (NO, PGE2, TNF-α, and IL-6) and two anti-inflammatory mediators (TGF-β1 and IL-10). However, the PCH-Hyp, PCH, and CH at dose levels of 100 μg/mL could combat against the LPS-induced inflammation. Overall, the PCH-Hyp was more active than the CH and PCH in reducing LDH release, ROS formation, and the secretion of these inflammatory mediators, or in increasing the secretion of the anti-inflammatory mediators. The qPCR and Western blot analysis results further confirmed that these samples had anti-inflammatory effects on the stimulated cells by suppressing the LPS-induced activation of the NF-κB signaling pathway, via regulating the mRNA/miRNA expression of iNOS, IL-6, TNF-α, IL-1β, COX-2, TLR4, IL-10, TGF-β1, miR-181a, miR-30d, miR-155, and miR-148, as well as the protein expression of MyD88, p-IKKα, p-IκBα, p-NF-κB p65, and iNOS, involved in this signaling pathway. In addition, the immunofluorescence assay results revealed that these samples could block the LPS-mediated nuclear translocation of the p65 protein and displayed the same function as the NF-κB inhibitor BAY 11-7082. It was concluded that CH could be endowed with higher anti-inflammatory activity to the macrophages by performing a plastein reaction, particularly that in the presence of exogenous Hyp.
format Online
Article
Text
id pubmed-8775256
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87752562022-01-21 Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages Shi, Yun-Jiao Zhao, Xin-Huai Foods Article In this study, papain-generated casein hydrolysates (CH) with a degree of hydrolysis of 13.7% were subjected to a papain-mediated plastein reaction in the absence or presence of one of the exogenous amino acids—Gly, Pro, and Hyp—to prepare four plastein modifiers, or mixed with one of three amino acids to prepare three mixtures. The assay results confirmed that the reaction reduced free NH(2) for the modifiers and caused amino acid incorporation and peptide condensation. When RAW264.7 macrophages were exposed to the CH, modifiers, and mixtures, these samples promoted macrophage growth and phagocytosis in a dose-dependent manner. In addition, the CH shared similar activity in the cells as the mixtures, while the modifiers (especially the PCH-Hyp prepared with Hyp addition) exerted higher potential than CH, the mixtures, and PCH (the modifier prepared without amino acid addition). The plastein reaction thus enhanced CH bioactivity in the cells. When RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS), the inflammatory cells produced more lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) formation, and caused more four inflammatory mediators (NO, PGE2, TNF-α, and IL-6) and two anti-inflammatory mediators (TGF-β1 and IL-10). However, the PCH-Hyp, PCH, and CH at dose levels of 100 μg/mL could combat against the LPS-induced inflammation. Overall, the PCH-Hyp was more active than the CH and PCH in reducing LDH release, ROS formation, and the secretion of these inflammatory mediators, or in increasing the secretion of the anti-inflammatory mediators. The qPCR and Western blot analysis results further confirmed that these samples had anti-inflammatory effects on the stimulated cells by suppressing the LPS-induced activation of the NF-κB signaling pathway, via regulating the mRNA/miRNA expression of iNOS, IL-6, TNF-α, IL-1β, COX-2, TLR4, IL-10, TGF-β1, miR-181a, miR-30d, miR-155, and miR-148, as well as the protein expression of MyD88, p-IKKα, p-IκBα, p-NF-κB p65, and iNOS, involved in this signaling pathway. In addition, the immunofluorescence assay results revealed that these samples could block the LPS-mediated nuclear translocation of the p65 protein and displayed the same function as the NF-κB inhibitor BAY 11-7082. It was concluded that CH could be endowed with higher anti-inflammatory activity to the macrophages by performing a plastein reaction, particularly that in the presence of exogenous Hyp. MDPI 2022-01-12 /pmc/articles/PMC8775256/ /pubmed/35053927 http://dx.doi.org/10.3390/foods11020196 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shi, Yun-Jiao
Zhao, Xin-Huai
Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title_full Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title_fullStr Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title_full_unstemmed Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title_short Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages
title_sort impact of the plastein reaction of casein hydrolysates in the presence of exogenous amino acids on their anti-inflammatory effect in the lipopolysaccharide-stimulated macrophages
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775256/
https://www.ncbi.nlm.nih.gov/pubmed/35053927
http://dx.doi.org/10.3390/foods11020196
work_keys_str_mv AT shiyunjiao impactoftheplasteinreactionofcaseinhydrolysatesinthepresenceofexogenousaminoacidsontheirantiinflammatoryeffectinthelipopolysaccharidestimulatedmacrophages
AT zhaoxinhuai impactoftheplasteinreactionofcaseinhydrolysatesinthepresenceofexogenousaminoacidsontheirantiinflammatoryeffectinthelipopolysaccharidestimulatedmacrophages