Cargando…
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
The aim of this study was to investigate the potential of a machine learning algorithm to accurately classify parenchymal density in spiral breast-CT (BCT), using a deep convolutional neural network (dCNN). In this retrospectively designed study, 634 examinations of 317 patients were included. After...
Autores principales: | Landsmann, Anna, Wieler, Jann, Hejduk, Patryk, Ciritsis, Alexander, Borkowski, Karol, Rossi, Cristina, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775263/ https://www.ncbi.nlm.nih.gov/pubmed/35054348 http://dx.doi.org/10.3390/diagnostics12010181 |
Ejemplares similares
-
Radiomics in photon-counting dedicated breast CT: potential of texture analysis for breast density classification
por: Landsmann, Anna, et al.
Publicado: (2022) -
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach
por: Borkowski, Karol, et al.
Publicado: (2020)