Cargando…
Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder
Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common...
Autores principales: | Yan, Xiaoan, Xu, Yadong, She, Daoming, Zhang, Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775338/ https://www.ncbi.nlm.nih.gov/pubmed/35052062 http://dx.doi.org/10.3390/e24010036 |
Ejemplares similares
-
A Bearing Fault Diagnosis Method Based on PAVME and MEDE
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Application of Generalized Composite Multiscale Lempel–Ziv Complexity in Identifying Wind Turbine Gearbox Faults
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Deep Learning for
Operating Performance Assessment
of Industrial Processes with Layer Attention-Based Stacked Performance-Relevant
Denoising Auto-Encoders
por: Liu, Yan, et al.
Publicado: (2023)