Cargando…
Diagnostic Performance of a Deep Learning Model Deployed at a National COVID-19 Screening Facility for Detection of Pneumonia on Frontal Chest Radiographs
(1) Background: Chest radiographs are the mainstay of initial radiological investigation in this COVID-19 pandemic. A reliable and readily deployable artificial intelligence (AI) algorithm that detects pneumonia in COVID-19 suspects can be useful for screening or triage in a hospital setting. This s...
Autores principales: | Sim, Jordan Z. T., Ting, Yong-Han, Tang, Yuan, Feng, Yangqin, Lei, Xiaofeng, Wang, Xiaohong, Chen, Wen-Xiang, Huang, Su, Wong, Sum-Thai, Lu, Zhongkang, Cui, Yingnan, Teo, Soo-Kng, Xu, Xin-Xing, Huang, Wei-Min, Tan, Cher-Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775598/ https://www.ncbi.nlm.nih.gov/pubmed/35052339 http://dx.doi.org/10.3390/healthcare10010175 |
Ejemplares similares
-
Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs
por: Feng, Yangqin, et al.
Publicado: (2023) -
Deployment and validation of an AI system for detecting abnormal chest radiographs in clinical settings
por: Nguyen, Ngoc Huy, et al.
Publicado: (2022) -
Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs
por: Pyrros, Ayis, et al.
Publicado: (2023) -
Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature
por: Zeng, Yukai, et al.
Publicado: (2018) -
High-risk chest radiographic features associated with COVID-19 disease severity
por: Ong, Sean Wei Xiang, et al.
Publicado: (2021)