Cargando…
Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors
Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress respons...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775908/ https://www.ncbi.nlm.nih.gov/pubmed/35054810 http://dx.doi.org/10.3390/ijms23020614 |
_version_ | 1784636701540352000 |
---|---|
author | Sun, Weiqi Li, Mengdi Wang, Jianbo |
author_facet | Sun, Weiqi Li, Mengdi Wang, Jianbo |
author_sort | Sun, Weiqi |
collection | PubMed |
description | Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis. |
format | Online Article Text |
id | pubmed-8775908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87759082022-01-21 Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors Sun, Weiqi Li, Mengdi Wang, Jianbo Int J Mol Sci Article Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis. MDPI 2022-01-06 /pmc/articles/PMC8775908/ /pubmed/35054810 http://dx.doi.org/10.3390/ijms23020614 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sun, Weiqi Li, Mengdi Wang, Jianbo Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title | Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title_full | Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title_fullStr | Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title_full_unstemmed | Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title_short | Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors |
title_sort | genome-wide identification and characterization of the rci2 gene family in allotetraploid brassica napus compared with its diploid progenitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775908/ https://www.ncbi.nlm.nih.gov/pubmed/35054810 http://dx.doi.org/10.3390/ijms23020614 |
work_keys_str_mv | AT sunweiqi genomewideidentificationandcharacterizationoftherci2genefamilyinallotetraploidbrassicanapuscomparedwithitsdiploidprogenitors AT limengdi genomewideidentificationandcharacterizationoftherci2genefamilyinallotetraploidbrassicanapuscomparedwithitsdiploidprogenitors AT wangjianbo genomewideidentificationandcharacterizationoftherci2genefamilyinallotetraploidbrassicanapuscomparedwithitsdiploidprogenitors |