Cargando…
Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network
The carbon market is recognized as the most effective means for reducing global carbon dioxide emissions. Effective carbon price forecasting can help the carbon market to solve environmental problems at a lower economic cost. However, the existing studies focus on the carbon premium explanation from...
Autores principales: | Yun, Po, Zhang, Chen, Wu, Yaqi, Yang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775960/ https://www.ncbi.nlm.nih.gov/pubmed/35055721 http://dx.doi.org/10.3390/ijerph19020899 |
Ejemplares similares
-
A hybrid model of modal decomposition and gated recurrent units for short-term load forecasting
por: Wang, Chun-Hua, et al.
Publicado: (2023) -
Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting
por: Zhang, Xingmin, et al.
Publicado: (2023) -
Forecasting Carbon Price in China: A Multimodel Comparison
por: Li, Houjian, et al.
Publicado: (2022) -
Forecasting Carbon Price Using Double Shrinkage Methods
por: Wei, Xiaolu, et al.
Publicado: (2023) -
Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine
por: Chen, Peng, et al.
Publicado: (2021)