Cargando…
Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects
We have previously demonstrated a high antitumor potential of NOS inhibitor T1023 (1-isobutanoyl-2-isopropylisothiourea hydrobromide): antitumor antiangiogenic activity in several animal tumor models and its ability to synergistically enhance the antitumor effects of bevacizumab, cyclophosphamide an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775993/ https://www.ncbi.nlm.nih.gov/pubmed/35054914 http://dx.doi.org/10.3390/ijms23020730 |
_version_ | 1784636723408404480 |
---|---|
author | Filimonova, Marina Shitova, Anna Soldatova, Olga Shevchenko, Ljudmila Saburova, Alina Podosinnikova, Tatjana Surinova, Valentina Shegay, Petr Kaprin, Andrey Ivanov, Sergey Filimonov, Alexander |
author_facet | Filimonova, Marina Shitova, Anna Soldatova, Olga Shevchenko, Ljudmila Saburova, Alina Podosinnikova, Tatjana Surinova, Valentina Shegay, Petr Kaprin, Andrey Ivanov, Sergey Filimonov, Alexander |
author_sort | Filimonova, Marina |
collection | PubMed |
description | We have previously demonstrated a high antitumor potential of NOS inhibitor T1023 (1-isobutanoyl-2-isopropylisothiourea hydrobromide): antitumor antiangiogenic activity in several animal tumor models and its ability to synergistically enhance the antitumor effects of bevacizumab, cyclophosphamide and γ-radiation. At the same time, rather rapid adaptation of experimental neoplasias to T1023 treatment was often observed. We attempted to enhance the antitumor activity of this NOS inhibitor by supplementing its molecular structure with a PDK-inhibiting fragment, dichloroacetate (DCA), which is capable of hypoxia-oriented toxic effects. We synthesized compound T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). Its toxic properties, NOS-inhibiting and PDK-inhibiting activity in vivo, and antitumor activity on the mouse Ehrlich carcinoma model (SEC) were investigated in compare with T1023 and Na-DCA. We found that the change of the salt-forming acid from HBr to DCA does not increase the toxicity of 1-isobutanoyl-2-isopropylisothiourea salts, but significantly expands the biochemical and anti-tumor activity. New compound T1084 realizes in vivo NOS-inhibiting and PDK-inhibiting activity, quantitatively, at the level of the previous compounds, T1023 and Na-DCA. In two independent experiments on SEC model, a pronounced synergistic antitumor effect of T1084 was observed in compare with T1023 and Na-DCA at equimolar doses. There were no signs of SEC adaptation to T1084 treatment, while experimental neoplasia rapidly desensitized to the separate treatment of both T1023 and Na-DCA. The totality of the data obtained indicates that the combination of antiangiogenic and hypoxia-oriented toxic effects (in this case, within the molecular structure of the active substance) can increase the antitumor effect and suppress the development of hypoxic resistance of neoplasias. In general, the proposed approach can be used for the design of new anticancer agents. |
format | Online Article Text |
id | pubmed-8775993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87759932022-01-21 Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects Filimonova, Marina Shitova, Anna Soldatova, Olga Shevchenko, Ljudmila Saburova, Alina Podosinnikova, Tatjana Surinova, Valentina Shegay, Petr Kaprin, Andrey Ivanov, Sergey Filimonov, Alexander Int J Mol Sci Article We have previously demonstrated a high antitumor potential of NOS inhibitor T1023 (1-isobutanoyl-2-isopropylisothiourea hydrobromide): antitumor antiangiogenic activity in several animal tumor models and its ability to synergistically enhance the antitumor effects of bevacizumab, cyclophosphamide and γ-radiation. At the same time, rather rapid adaptation of experimental neoplasias to T1023 treatment was often observed. We attempted to enhance the antitumor activity of this NOS inhibitor by supplementing its molecular structure with a PDK-inhibiting fragment, dichloroacetate (DCA), which is capable of hypoxia-oriented toxic effects. We synthesized compound T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). Its toxic properties, NOS-inhibiting and PDK-inhibiting activity in vivo, and antitumor activity on the mouse Ehrlich carcinoma model (SEC) were investigated in compare with T1023 and Na-DCA. We found that the change of the salt-forming acid from HBr to DCA does not increase the toxicity of 1-isobutanoyl-2-isopropylisothiourea salts, but significantly expands the biochemical and anti-tumor activity. New compound T1084 realizes in vivo NOS-inhibiting and PDK-inhibiting activity, quantitatively, at the level of the previous compounds, T1023 and Na-DCA. In two independent experiments on SEC model, a pronounced synergistic antitumor effect of T1084 was observed in compare with T1023 and Na-DCA at equimolar doses. There were no signs of SEC adaptation to T1084 treatment, while experimental neoplasia rapidly desensitized to the separate treatment of both T1023 and Na-DCA. The totality of the data obtained indicates that the combination of antiangiogenic and hypoxia-oriented toxic effects (in this case, within the molecular structure of the active substance) can increase the antitumor effect and suppress the development of hypoxic resistance of neoplasias. In general, the proposed approach can be used for the design of new anticancer agents. MDPI 2022-01-10 /pmc/articles/PMC8775993/ /pubmed/35054914 http://dx.doi.org/10.3390/ijms23020730 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Filimonova, Marina Shitova, Anna Soldatova, Olga Shevchenko, Ljudmila Saburova, Alina Podosinnikova, Tatjana Surinova, Valentina Shegay, Petr Kaprin, Andrey Ivanov, Sergey Filimonov, Alexander Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title | Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title_full | Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title_fullStr | Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title_full_unstemmed | Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title_short | Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects |
title_sort | combination of nos- and pdk-inhibitory activity: possible way to enhance antitumor effects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775993/ https://www.ncbi.nlm.nih.gov/pubmed/35054914 http://dx.doi.org/10.3390/ijms23020730 |
work_keys_str_mv | AT filimonovamarina combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT shitovaanna combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT soldatovaolga combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT shevchenkoljudmila combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT saburovaalina combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT podosinnikovatatjana combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT surinovavalentina combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT shegaypetr combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT kaprinandrey combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT ivanovsergey combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects AT filimonovalexander combinationofnosandpdkinhibitoryactivitypossiblewaytoenhanceantitumoreffects |