Cargando…

Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones

Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of res...

Descripción completa

Detalles Bibliográficos
Autores principales: Teixeira, Iris S., Farias, André B., Horta, Bruno A. C., Milagre, Humberto M. S., de Souza, Rodrigo O. M. A., Bornscheuer, Uwe T., Milagre, Cintia D. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776209/
https://www.ncbi.nlm.nih.gov/pubmed/35054965
http://dx.doi.org/10.3390/ijms23020777
_version_ 1784636776145485824
author Teixeira, Iris S.
Farias, André B.
Horta, Bruno A. C.
Milagre, Humberto M. S.
de Souza, Rodrigo O. M. A.
Bornscheuer, Uwe T.
Milagre, Cintia D. F.
author_facet Teixeira, Iris S.
Farias, André B.
Horta, Bruno A. C.
Milagre, Humberto M. S.
de Souza, Rodrigo O. M. A.
Bornscheuer, Uwe T.
Milagre, Cintia D. F.
author_sort Teixeira, Iris S.
collection PubMed
description Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,β-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.
format Online
Article
Text
id pubmed-8776209
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87762092022-01-21 Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones Teixeira, Iris S. Farias, André B. Horta, Bruno A. C. Milagre, Humberto M. S. de Souza, Rodrigo O. M. A. Bornscheuer, Uwe T. Milagre, Cintia D. F. Int J Mol Sci Article Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,β-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results. MDPI 2022-01-11 /pmc/articles/PMC8776209/ /pubmed/35054965 http://dx.doi.org/10.3390/ijms23020777 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Teixeira, Iris S.
Farias, André B.
Horta, Bruno A. C.
Milagre, Humberto M. S.
de Souza, Rodrigo O. M. A.
Bornscheuer, Uwe T.
Milagre, Cintia D. F.
Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title_full Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title_fullStr Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title_full_unstemmed Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title_short Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones
title_sort computer modeling explains the structural reasons for the difference in reactivity of amine transaminases regarding prochiral methylketones
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776209/
https://www.ncbi.nlm.nih.gov/pubmed/35054965
http://dx.doi.org/10.3390/ijms23020777
work_keys_str_mv AT teixeirairiss computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT fariasandreb computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT hortabrunoac computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT milagrehumbertoms computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT desouzarodrigooma computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT bornscheueruwet computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones
AT milagrecintiadf computermodelingexplainsthestructuralreasonsforthedifferenceinreactivityofaminetransaminasesregardingprochiralmethylketones