Cargando…
Two-Step k-means Clustering Based Information Entropy for Detecting Environmental Barriers Using Wearable Sensor
Walking is the most basic means of transportation. Therefore, continuous management of the walking environment is very important. In particular, the identification of environmental barriers that can impede walkability is the first step in improving the pedestrian experience. Current practices for id...
Autores principales: | Lee, Bogyeong, Kim, Hyunsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776234/ https://www.ncbi.nlm.nih.gov/pubmed/35055526 http://dx.doi.org/10.3390/ijerph19020704 |
Ejemplares similares
-
The Feasibility of Information-Entropy-Based Behavioral Analysis for Detecting Environmental Barriers
por: Lee, Bogyeong, et al.
Publicado: (2021) -
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
por: Xiong, Liyan, et al.
Publicado: (2019) -
Sample Entropy Combined with the K-Means Clustering Algorithm Reveals Six Functional Networks of the Brain
por: Jia, Yanbing, et al.
Publicado: (2019) -
A practical comparison of two K-Means clustering algorithms
por: Wilkin, Gregory A, et al.
Publicado: (2008) -
Portfolio Optimization with a Mean-Entropy-Mutual Information Model
por: Novais, Rodrigo Gonçalves, et al.
Publicado: (2022)