Cargando…
Global organization of neuronal activity only requires unstructured local connectivity
Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776256/ https://www.ncbi.nlm.nih.gov/pubmed/35049496 http://dx.doi.org/10.7554/eLife.68422 |
_version_ | 1784636788189429760 |
---|---|
author | Dahmen, David Layer, Moritz Deutz, Lukas Dąbrowska, Paulina Anna Voges, Nicole von Papen, Michael Brochier, Thomas Riehle, Alexa Diesmann, Markus Grün, Sonja Helias, Moritz |
author_facet | Dahmen, David Layer, Moritz Deutz, Lukas Dąbrowska, Paulina Anna Voges, Nicole von Papen, Michael Brochier, Thomas Riehle, Alexa Diesmann, Markus Grün, Sonja Helias, Moritz |
author_sort | Dahmen, David |
collection | PubMed |
description | Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands. |
format | Online Article Text |
id | pubmed-8776256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-87762562022-01-21 Global organization of neuronal activity only requires unstructured local connectivity Dahmen, David Layer, Moritz Deutz, Lukas Dąbrowska, Paulina Anna Voges, Nicole von Papen, Michael Brochier, Thomas Riehle, Alexa Diesmann, Markus Grün, Sonja Helias, Moritz eLife Neuroscience Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands. eLife Sciences Publications, Ltd 2022-01-20 /pmc/articles/PMC8776256/ /pubmed/35049496 http://dx.doi.org/10.7554/eLife.68422 Text en © 2022, Dahmen et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Dahmen, David Layer, Moritz Deutz, Lukas Dąbrowska, Paulina Anna Voges, Nicole von Papen, Michael Brochier, Thomas Riehle, Alexa Diesmann, Markus Grün, Sonja Helias, Moritz Global organization of neuronal activity only requires unstructured local connectivity |
title | Global organization of neuronal activity only requires unstructured local connectivity |
title_full | Global organization of neuronal activity only requires unstructured local connectivity |
title_fullStr | Global organization of neuronal activity only requires unstructured local connectivity |
title_full_unstemmed | Global organization of neuronal activity only requires unstructured local connectivity |
title_short | Global organization of neuronal activity only requires unstructured local connectivity |
title_sort | global organization of neuronal activity only requires unstructured local connectivity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776256/ https://www.ncbi.nlm.nih.gov/pubmed/35049496 http://dx.doi.org/10.7554/eLife.68422 |
work_keys_str_mv | AT dahmendavid globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT layermoritz globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT deutzlukas globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT dabrowskapaulinaanna globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT vogesnicole globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT vonpapenmichael globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT brochierthomas globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT riehlealexa globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT diesmannmarkus globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT grunsonja globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity AT heliasmoritz globalorganizationofneuronalactivityonlyrequiresunstructuredlocalconnectivity |