Cargando…

A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19

This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Md Rafiul, Ismail, Walaa N., Chowdhury, Ahmad, Hossain, Sharara, Huda, Shamsul, Hassan, Mohammad Mehedi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776397/
https://www.ncbi.nlm.nih.gov/pubmed/35079199
http://dx.doi.org/10.1007/s11227-021-04222-4
_version_ 1784636824830869504
author Hassan, Md Rafiul
Ismail, Walaa N.
Chowdhury, Ahmad
Hossain, Sharara
Huda, Shamsul
Hassan, Mohammad Mehedi
author_facet Hassan, Md Rafiul
Ismail, Walaa N.
Chowdhury, Ahmad
Hossain, Sharara
Huda, Shamsul
Hassan, Mohammad Mehedi
author_sort Hassan, Md Rafiul
collection PubMed
description This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.
format Online
Article
Text
id pubmed-8776397
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-87763972022-01-21 A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19 Hassan, Md Rafiul Ismail, Walaa N. Chowdhury, Ahmad Hossain, Sharara Huda, Shamsul Hassan, Mohammad Mehedi J Supercomput Article This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies. Springer US 2022-01-21 2022 /pmc/articles/PMC8776397/ /pubmed/35079199 http://dx.doi.org/10.1007/s11227-021-04222-4 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2023Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Hassan, Md Rafiul
Ismail, Walaa N.
Chowdhury, Ahmad
Hossain, Sharara
Huda, Shamsul
Hassan, Mohammad Mehedi
A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title_full A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title_fullStr A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title_full_unstemmed A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title_short A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
title_sort framework of genetic algorithm-based cnn on multi-access edge computing for automated detection of covid-19
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776397/
https://www.ncbi.nlm.nih.gov/pubmed/35079199
http://dx.doi.org/10.1007/s11227-021-04222-4
work_keys_str_mv AT hassanmdrafiul aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT ismailwalaan aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT chowdhuryahmad aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hossainsharara aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hudashamsul aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hassanmohammadmehedi aframeworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hassanmdrafiul frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT ismailwalaan frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT chowdhuryahmad frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hossainsharara frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hudashamsul frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19
AT hassanmohammadmehedi frameworkofgeneticalgorithmbasedcnnonmultiaccessedgecomputingforautomateddetectionofcovid19