Cargando…
A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN...
Autores principales: | Hassan, Md Rafiul, Ismail, Walaa N., Chowdhury, Ahmad, Hossain, Sharara, Huda, Shamsul, Hassan, Mohammad Mehedi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776397/ https://www.ncbi.nlm.nih.gov/pubmed/35079199 http://dx.doi.org/10.1007/s11227-021-04222-4 |
Ejemplares similares
-
Correction to: A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
por: Hassan, Md Raful, et al.
Publicado: (2023) -
AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design
por: Ismail, Walaa N., et al.
Publicado: (2023) -
A Decision-Level Fusion Method for COVID-19 Patient Health Prediction
por: Gumaei, Abdu, et al.
Publicado: (2022) -
Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care
por: Ismail, Walaa N., et al.
Publicado: (2017) -
CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction
por: Tsukiyama, Sho, et al.
Publicado: (2022)