Cargando…
Intelligent Diagnosis Method for New Diseases Based on Fuzzy SVM Incremental Learning
The diagnosis of new diseases is a challenging problem. In the early stage of the emergence of new diseases, there are few case samples; this may lead to the low accuracy of intelligent diagnosis. Because of the advantages of support vector machine (SVM) in dealing with small sample problems, it is...
Autor principal: | Song-men, Shi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776429/ https://www.ncbi.nlm.nih.gov/pubmed/35069792 http://dx.doi.org/10.1155/2022/7631271 |
Ejemplares similares
-
Incremental Learning with SVM for Multimodal Classification of Prostatic Adenocarcinoma
por: García Molina, José Fernando, et al.
Publicado: (2014) -
Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR
por: Gao, Lixin, et al.
Publicado: (2010) -
Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning
por: Fu, Cui, et al.
Publicado: (2022) -
A new intelligent bearing fault diagnosis model based on triplet network and SVM
por: Yang, Kaisi, et al.
Publicado: (2022) -
Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples
por: Men, Hong, et al.
Publicado: (2018)