Cargando…
Supramolecular Arrangement of Protein in Nanoparticle Structures Predicts Nanoparticle Tropism for Neutrophils in Acute Lung Inflammation
This study shows that supramolecular arrangement of proteins in nanoparticle structure predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of p...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776575/ https://www.ncbi.nlm.nih.gov/pubmed/34795440 http://dx.doi.org/10.1038/s41565-021-00997-y |
Sumario: | This study shows that supramolecular arrangement of proteins in nanoparticle structure predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of protein in or on the nanoparticles via; a) hydrophobic interactions; b) crosslinking; c) electrostatic interactions. Nanoparticles with symmetric protein arrangement (e.g., viral capsids) had no selectivity for inflamed lungs. Flow cytometry and immunohistochemistry showed NAPs have tropism for pulmonary neutrophils. Protein-conjugated liposomes were engineered to recapitulate NAP tropism for pulmonary neutrophils. NAP uptake in neutrophils was shown to depend on complement opsonization. We; a) demonstrate diagnostic imaging of ALI with NAPs; b) show NAP tropism for inflamed human donor lungs; c) show NAPs can remediate pulmonary edema in ALI. This work demonstrates structure-dependent tropism for neutrophils drives NAPs to inflamed lungs and shows NAPs can detect and treat ALI. |
---|