Cargando…

Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group

We retrospectively assessed whether magnetic resonance imaging (MRI) radiomics combined with clinical parameters can improve the predictability of out-of-field recurrence (OFR) of cervical cancer after chemoradiotherapy. The data set was collected from 204 patients with stage IIB (FIGO: Internationa...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikushima, Hitoshi, Haga, Akihiro, Ando, Ken, Kato, Shingo, Kaneyasu, Yuko, Uno, Takashi, Okonogi, Noriyuki, Yoshida, Kenji, Ariga, Takuro, Isohashi, Fumiaki, Harima, Yoko, Kanemoto, Ayae, Ii, Noriko, Wakatsuki, Masaru, Ohno, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776693/
https://www.ncbi.nlm.nih.gov/pubmed/34865079
http://dx.doi.org/10.1093/jrr/rrab104
_version_ 1784636886889791488
author Ikushima, Hitoshi
Haga, Akihiro
Ando, Ken
Kato, Shingo
Kaneyasu, Yuko
Uno, Takashi
Okonogi, Noriyuki
Yoshida, Kenji
Ariga, Takuro
Isohashi, Fumiaki
Harima, Yoko
Kanemoto, Ayae
Ii, Noriko
Wakatsuki, Masaru
Ohno, Tatsuya
author_facet Ikushima, Hitoshi
Haga, Akihiro
Ando, Ken
Kato, Shingo
Kaneyasu, Yuko
Uno, Takashi
Okonogi, Noriyuki
Yoshida, Kenji
Ariga, Takuro
Isohashi, Fumiaki
Harima, Yoko
Kanemoto, Ayae
Ii, Noriko
Wakatsuki, Masaru
Ohno, Tatsuya
author_sort Ikushima, Hitoshi
collection PubMed
description We retrospectively assessed whether magnetic resonance imaging (MRI) radiomics combined with clinical parameters can improve the predictability of out-of-field recurrence (OFR) of cervical cancer after chemoradiotherapy. The data set was collected from 204 patients with stage IIB (FIGO: International Federation of Gynecology and Obstetrics 2008) cervical cancer who underwent chemoradiotherapy at 14 Japanese institutes. Of these, 180 patients were finally included for analysis. OFR-free survival was calculated using the Kaplan–Meier method, and the statistical significance of clinicopathological parameters for the OFR-free survival was evaluated using the log-rank test and Cox proportional-hazards model. Prediction of OFR from the analysis of diffusion-weighted images (DWI) and T2-weighted images of pretreatment MRI was done using the least absolute shrinkage and selection operator (LASSO) model for engineering image feature extraction. The accuracy of prediction was evaluated by 5-fold cross-validation of the receiver operating characteristic (ROC) analysis. Para-aortic lymph node metastasis (p = 0.003) was a significant prognostic factor in univariate and multivariate analyses. ROC analysis showed an area under the curve (AUC) of 0.709 in predicting OFR using the pretreatment status of para-aortic lymph node metastasis, 0.667 using the LASSO model for DWIs and 0.602 using T2 weighted images. The AUC improved to 0.734 upon combining the pretreatment status of para-aortic lymph node metastasis with that from the LASSO model for DWIs. Combining MRI radiomics with clinical parameters improved the accuracy of predicting OFR after chemoradiotherapy for locally advanced cervical cancer.
format Online
Article
Text
id pubmed-8776693
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-87766932022-01-21 Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group Ikushima, Hitoshi Haga, Akihiro Ando, Ken Kato, Shingo Kaneyasu, Yuko Uno, Takashi Okonogi, Noriyuki Yoshida, Kenji Ariga, Takuro Isohashi, Fumiaki Harima, Yoko Kanemoto, Ayae Ii, Noriko Wakatsuki, Masaru Ohno, Tatsuya J Radiat Res Oncology/Medicine We retrospectively assessed whether magnetic resonance imaging (MRI) radiomics combined with clinical parameters can improve the predictability of out-of-field recurrence (OFR) of cervical cancer after chemoradiotherapy. The data set was collected from 204 patients with stage IIB (FIGO: International Federation of Gynecology and Obstetrics 2008) cervical cancer who underwent chemoradiotherapy at 14 Japanese institutes. Of these, 180 patients were finally included for analysis. OFR-free survival was calculated using the Kaplan–Meier method, and the statistical significance of clinicopathological parameters for the OFR-free survival was evaluated using the log-rank test and Cox proportional-hazards model. Prediction of OFR from the analysis of diffusion-weighted images (DWI) and T2-weighted images of pretreatment MRI was done using the least absolute shrinkage and selection operator (LASSO) model for engineering image feature extraction. The accuracy of prediction was evaluated by 5-fold cross-validation of the receiver operating characteristic (ROC) analysis. Para-aortic lymph node metastasis (p = 0.003) was a significant prognostic factor in univariate and multivariate analyses. ROC analysis showed an area under the curve (AUC) of 0.709 in predicting OFR using the pretreatment status of para-aortic lymph node metastasis, 0.667 using the LASSO model for DWIs and 0.602 using T2 weighted images. The AUC improved to 0.734 upon combining the pretreatment status of para-aortic lymph node metastasis with that from the LASSO model for DWIs. Combining MRI radiomics with clinical parameters improved the accuracy of predicting OFR after chemoradiotherapy for locally advanced cervical cancer. Oxford University Press 2021-12-03 /pmc/articles/PMC8776693/ /pubmed/34865079 http://dx.doi.org/10.1093/jrr/rrab104 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Oncology/Medicine
Ikushima, Hitoshi
Haga, Akihiro
Ando, Ken
Kato, Shingo
Kaneyasu, Yuko
Uno, Takashi
Okonogi, Noriyuki
Yoshida, Kenji
Ariga, Takuro
Isohashi, Fumiaki
Harima, Yoko
Kanemoto, Ayae
Ii, Noriko
Wakatsuki, Masaru
Ohno, Tatsuya
Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title_full Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title_fullStr Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title_full_unstemmed Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title_short Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group
title_sort prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the japanese radiation oncology study group
topic Oncology/Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776693/
https://www.ncbi.nlm.nih.gov/pubmed/34865079
http://dx.doi.org/10.1093/jrr/rrab104
work_keys_str_mv AT ikushimahitoshi predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT hagaakihiro predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT andoken predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT katoshingo predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT kaneyasuyuko predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT unotakashi predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT okonoginoriyuki predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT yoshidakenji predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT arigatakuro predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT isohashifumiaki predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT harimayoko predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT kanemotoayae predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT iinoriko predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT wakatsukimasaru predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup
AT ohnotatsuya predictionofoutoffieldrecurrenceafterchemoradiotherapyforcervicalcancerusingacombinationmodelofclinicalparametersandmagneticresonanceimagingradiomicsamultiinstitutionalstudyofthejapaneseradiationoncologystudygroup