Cargando…
Artificial-intelligence-driven discovery of catalyst genes with application to CO(2) activation on semiconductor oxides
Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials us...
Autores principales: | Mazheika, Aliaksei, Wang, Yang-Gang, Valero, Rosendo, Viñes, Francesc, Illas, Francesc, Ghiringhelli, Luca M., Levchenko, Sergey V., Scheffler, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776738/ https://www.ncbi.nlm.nih.gov/pubmed/35058444 http://dx.doi.org/10.1038/s41467-022-28042-z |
Ejemplares similares
-
Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence
por: Han, Zhong-Kang, et al.
Publicado: (2021) -
Machine
Learning-Driven Discovery of Key Descriptors
for CO(2) Activation over Two-Dimensional Transition Metal
Carbides and Nitrides
por: Abraham, B. Moses, et al.
Publicado: (2023) -
Exfoliation Energy as a Descriptor of MXenes Synthesizability and Surface Chemical Activity
por: Dolz, Daniel, et al.
Publicado: (2021) -
Identifying the Atomic Layer Stacking of Mo(2)C MXene by
Probe Molecule Adsorption
por: Jurado, Anabel, et al.
Publicado: (2021) -
Toward a Rigorous Theoretical Description of Photocatalysis
Using Realistic Models
por: Morales-García, Ángel, et al.
Publicado: (2023)