Cargando…
Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction
This study looked at novel data sources for cardiovascular risk prediction including detailed lifestyle questionnaire and continuous blood pressure monitoring, using ensemble machine learning algorithms (MLAs). The reference conventional risk score compared against was the Framingham Risk Score (FRS...
Autores principales: | Huang, Weiting, Ying, Tan Wei, Chin, Woon Loong Calvin, Baskaran, Lohendran, Marcus, Ong Eng Hock, Yeo, Khung Keong, Kiong, Ng See |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776753/ https://www.ncbi.nlm.nih.gov/pubmed/35058500 http://dx.doi.org/10.1038/s41598-021-04649-y |
Ejemplares similares
-
High-Resolution Digital Phenotypes From Consumer Wearables and Their Applications in Machine Learning of Cardiometabolic Risk Markers: Cohort Study
por: Zhou, Weizhuang, et al.
Publicado: (2022) -
Ensemble Positive Unlabeled Learning for Disease Gene Identification
por: Yang, Peng, et al.
Publicado: (2014) -
Digital phenotyping by consumer wearables identifies sleep-associated markers of cardiovascular disease risk and biological aging
por: Teo, Jing Xian, et al.
Publicado: (2019) -
Beyond fitness tracking: The use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research
por: Lim, Weng Khong, et al.
Publicado: (2018) -
Severe mitral regurgitation from Libman–Sacks endocarditis treated with MitraClip: a case report
por: Ningyan, Wong, et al.
Publicado: (2021)