Cargando…

Correction of a Factor VIII genomic inversion with designer-recombinases

Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lansing, Felix, Mukhametzyanova, Liliya, Rojo-Romanos, Teresa, Iwasawa, Kentaro, Kimura, Masaki, Paszkowski-Rogacz, Maciej, Karpinski, Janet, Grass, Tobias, Sonntag, Jan, Schneider, Paul Martin, Günes, Ceren, Hoersten, Jenna, Schmitt, Lukas Theo, Rodriguez-Muela, Natalia, Knöfler, Ralf, Takebe, Takanori, Buchholz, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776779/
https://www.ncbi.nlm.nih.gov/pubmed/35058465
http://dx.doi.org/10.1038/s41467-022-28080-7
Descripción
Sumario:Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions.