Cargando…
A universal methodology for reliable predicting the non-steroidal anti-inflammatory drug solubility in supercritical carbon dioxide
Understanding the drug solubility behavior is likely the first essential requirement for designing the supercritical technology for pharmaceutical processing. Therefore, this study utilizes different machine learning scenarios to simulate the solubility of twelve non-steroidal anti-inflammatory drug...
Autores principales: | Rezaei, Tahereh, Nazarpour, Vesal, Shahini, Nahal, Bahmani, Soufia, Shahkar, Amir, Abdihaji, Mohammadreza, Ahmadi, Sina, Shahdost, Farzad Tat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776948/ https://www.ncbi.nlm.nih.gov/pubmed/35058504 http://dx.doi.org/10.1038/s41598-022-04942-4 |
Ejemplares similares
-
Experimental solubility of aripiprazole in supercritical carbon dioxide and modeling
por: Ansari, Eslam, et al.
Publicado: (2023) -
Estimating the density of deep eutectic solvents applying supervised machine learning techniques
por: Abdollahzadeh, Mohammadjavad, et al.
Publicado: (2022) -
Solubility of Anthraquinone Derivatives in Supercritical Carbon Dioxide: New Correlations
por: Alwi, Ratna Surya, et al.
Publicado: (2021) -
Experimental solubility and thermodynamic modeling of empagliflozin in supercritical carbon dioxide
por: Sodeifian, Gholamhossein, et al.
Publicado: (2022) -
Supercritical carbon dioxide
por: Marcus, Yizhak
Publicado: (2019)