Cargando…
The microbiome of wild and mass-reared new world screwworm, Cochliomyia hominivorax
Insect population control through continual releases of large numbers of sterile insects, called sterile insect technique (SIT), is only possible if one can mass-rear large quantities of healthy insects. Adaptation of insect stocks to rearing conditions and artificial feeding systems can have a mult...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776964/ https://www.ncbi.nlm.nih.gov/pubmed/35058490 http://dx.doi.org/10.1038/s41598-022-04828-5 |
Sumario: | Insect population control through continual releases of large numbers of sterile insects, called sterile insect technique (SIT), is only possible if one can mass-rear large quantities of healthy insects. Adaptation of insect stocks to rearing conditions and artificial feeding systems can have a multitude of negative effects such as inbreeding depression, reduced compatibility with wild strains, unintentional selection for traits that lower fitness after release, and an altered microbiome. Changes to insect microbiomes can have many effects on insects ranging from a reduction in sex pheromones or reduced fitness. Thus understanding these systems is important for mass rearing and the performance of the sterile insect control programs. In this study we explored the microbiome of the New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) an economically important parasite of warm-blooded animals. Samples from myiases in cows and wild adults were compared to and mass-reared flies used by the SIT program. Significant differences were observed between these treatments, with wild captured flies having a significantly more diverse microbial composition. Bacteria known to stimulate oviposition were found in both wild and mass-reared flies. Two bacteria of veterinary importance were abundant in wild flies, suggesting screwworm is a potential vector of these diseases. Overall, this study provides the screwworm eradication program a platform to continue exploring the effects associated bacteria have on screwworm fitness. |
---|