Cargando…
A novel graph mining approach to predict and evaluate food-drug interactions
Food-drug interactions (FDIs) arise when nutritional dietary consumption regulates biochemical mechanisms involved in drug metabolism. This study proposes FDMine, a novel systematic framework that models the FDI problem as a homogenous graph. Our dataset consists of 788 unique approved small molecul...
Autores principales: | Rahman, Md. Mostafizur, Vadrev, Srinivas Mukund, Magana-Mora, Arturo, Levman, Jacob, Soufan, Othman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776972/ https://www.ncbi.nlm.nih.gov/pubmed/35058561 http://dx.doi.org/10.1038/s41598-022-05132-y |
Ejemplares similares
-
DPubChem: a web tool for QSAR modeling and high-throughput virtual screening
por: Soufan, Othman, et al.
Publicado: (2018) -
Interactive Data Mining for Molecular Graphs
por: Yılmaz, Burcu, et al.
Publicado: (2009) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
por: Olayan, Rawan S, et al.
Publicado: (2018) -
DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
por: Olayan, Rawan S, et al.
Publicado: (2018)