Cargando…
Random survival forest model identifies novel biomarkers of event-free survival in high-risk pediatric acute lymphoblastic leukemia
High-risk pediatric B-ALL patients experience 5-year negative event rates up to 25%. Although some biomarkers of relapse are utilized in the clinic, their ability to predict outcomes in high-risk patients is limited. Here, we propose a random survival forest (RSF) machine learning model utilizing in...
Autores principales: | Bohannan, Zachary S., Coffman, Frederick, Mitrofanova, Antonina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777142/ https://www.ncbi.nlm.nih.gov/pubmed/35116134 http://dx.doi.org/10.1016/j.csbj.2022.01.003 |
Ejemplares similares
-
Calling Variants in the Clinic: Informed Variant Calling Decisions Based on Biological, Clinical, and Laboratory Variables
por: Bohannan, Zachary S., et al.
Publicado: (2019) -
Validation of Minimal Residual Disease as Surrogate Endpoint for Event-Free Survival in Childhood Acute Lymphoblastic Leukemia
por: Galimberti, Stefania, et al.
Publicado: (2018) -
Characterization of Pediatric Acute Lymphoblastic Leukemia Survival Patterns by Age at Diagnosis
por: Hossain, Md Jobayer, et al.
Publicado: (2014) -
An age-based, RNA expression paradigm for survival biomarker identification for pediatric neuroblastoma and acute lymphoblastic leukemia
por: Diviney, Andrea, et al.
Publicado: (2019) -
A Nomogram for Predicting Event-Free Survival in Childhood Acute Lymphoblastic Leukemia: A Multicenter Retrospective Study
por: He, Yun-yan, et al.
Publicado: (2022)