Cargando…
Estimating the state of epidemics spreading with graph neural networks
When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of...
Autores principales: | Tomy, Abhishek, Razzanelli, Matteo, Di Lauro, Francesco, Rus, Daniela, Della Santina, Cosimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777184/ https://www.ncbi.nlm.nih.gov/pubmed/35079201 http://dx.doi.org/10.1007/s11071-021-07160-1 |
Ejemplares similares
-
Dynamics of epidemic spreading on connected graphs
por: Besse, Christophe, et al.
Publicado: (2021) -
A GIS-aided cellular automata system for monitoring and estimating graph-based spread of epidemics
por: Kyriakou, Charilaos, et al.
Publicado: (2022) -
Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure
por: Hadidjojo, Jeremy, et al.
Publicado: (2011) -
A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents
por: Draief, Moez, et al.
Publicado: (2010) -
DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information
por: Arapi, Visar, et al.
Publicado: (2018)