Cargando…
General-Purpose Bayesian Tensor Learning With Automatic Rank Determination and Uncertainty Quantification
A major challenge in many machine learning tasks is that the model expressive power depends on model size. Low-rank tensor methods are an efficient tool for handling the curse of dimensionality in many large-scale machine learning models. The major challenges in training a tensor learning model incl...
Autores principales: | Zhang, Kaiqi, Hawkins, Cole, Zhang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777296/ https://www.ncbi.nlm.nih.gov/pubmed/35072057 http://dx.doi.org/10.3389/frai.2021.668353 |
Ejemplares similares
-
Domain Generalization for Language-Independent Automatic Speech Recognition
por: Gao, Heting, et al.
Publicado: (2022) -
Compact Neural Architecture Designs by Tensor Representations
por: Su, Jiahao, et al.
Publicado: (2022) -
An improved two-stage label propagation algorithm based on LeaderRank
por: Liu, Miaomiao, et al.
Publicado: (2022) -
Politics by Automatic Means? A Critique of Artificial Intelligence Ethics at Work
por: Cole, Matthew, et al.
Publicado: (2022) -
A Comparison of Artificial Intelligence and Human Doctors for the Purpose of Triage and Diagnosis
por: Baker, Adam, et al.
Publicado: (2020)