Cargando…
Assessment of Soft Computing Techniques for the Prediction of Compressive Strength of Bacterial Concrete
In this investigation, the potential of M5P, Random Tree (RT), Reduced Error Pruning Tree (REP Tree), Random Forest (RF), and Support Vector Regression (SVR) techniques have been evaluated and compared with the multiple linear regression-based model (MLR) to be used for prediction of the compressive...
Autores principales: | Almohammed, Fadi, Sihag, Parveen, Sammen, Saad Sh., Ostrowski, Krzysztof Adam, Singh, Karan, Prasad, C. Venkata Siva Rama, Zajdel, Paulina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777621/ https://www.ncbi.nlm.nih.gov/pubmed/35057207 http://dx.doi.org/10.3390/ma15020489 |
Ejemplares similares
-
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
por: Ahmad, Waqas, et al.
Publicado: (2021) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete
por: Ahmed, Hemn U., et al.
Publicado: (2022)