Cargando…
Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities
Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential change to detec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777636/ https://www.ncbi.nlm.nih.gov/pubmed/35056248 http://dx.doi.org/10.3390/mi13010083 |
_version_ | 1784637113755500544 |
---|---|
author | Guo, Kai Song, Zirui Wang, Gaoxing Tang, Chengchun |
author_facet | Guo, Kai Song, Zirui Wang, Gaoxing Tang, Chengchun |
author_sort | Guo, Kai |
collection | PubMed |
description | Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential change to detect microbial activity, which is rooted in the concept that metabolic activity can change the redox potential of a microbial community. The redox potential change was captured by a biosensor consisting of porous boron nitride, ATP-DNA aptamer, and methylene blue as the fluorophore. This assembly can switch on or off when there is a redox potential change, and this change leads to a fluorescence change that can be examined using a multipurpose microplate reader. The results show that this biosensor can detect microbial community changes when its composition is changed or toxic metals are ingested. |
format | Online Article Text |
id | pubmed-8777636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87776362022-01-22 Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities Guo, Kai Song, Zirui Wang, Gaoxing Tang, Chengchun Micromachines (Basel) Article Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential change to detect microbial activity, which is rooted in the concept that metabolic activity can change the redox potential of a microbial community. The redox potential change was captured by a biosensor consisting of porous boron nitride, ATP-DNA aptamer, and methylene blue as the fluorophore. This assembly can switch on or off when there is a redox potential change, and this change leads to a fluorescence change that can be examined using a multipurpose microplate reader. The results show that this biosensor can detect microbial community changes when its composition is changed or toxic metals are ingested. MDPI 2022-01-04 /pmc/articles/PMC8777636/ /pubmed/35056248 http://dx.doi.org/10.3390/mi13010083 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Kai Song, Zirui Wang, Gaoxing Tang, Chengchun Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title | Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title_full | Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title_fullStr | Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title_full_unstemmed | Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title_short | Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities |
title_sort | detecting redox potentials using porous boron nitride/atp-dna aptamer/methylene blue biosensor to monitor microbial activities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777636/ https://www.ncbi.nlm.nih.gov/pubmed/35056248 http://dx.doi.org/10.3390/mi13010083 |
work_keys_str_mv | AT guokai detectingredoxpotentialsusingporousboronnitrideatpdnaaptamermethylenebluebiosensortomonitormicrobialactivities AT songzirui detectingredoxpotentialsusingporousboronnitrideatpdnaaptamermethylenebluebiosensortomonitormicrobialactivities AT wanggaoxing detectingredoxpotentialsusingporousboronnitrideatpdnaaptamermethylenebluebiosensortomonitormicrobialactivities AT tangchengchun detectingredoxpotentialsusingporousboronnitrideatpdnaaptamermethylenebluebiosensortomonitormicrobialactivities |