Cargando…

Self-Protected Virtual Sensor Network for Microcontroller Fault Detection

This paper introduces a procedure to compare the functional behaviour of individual units of electronic hardware of the same type. The primary use case for this method is to estimate the functional integrity of an unknown device unit based on the behaviour of a known and proven reference unit. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Sternharz, German, Skackauskas, Jonas, Elhalwagy, Ayman, Grichnik, Anthony J., Kalganova, Tatiana, Huda, Md Nazmul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777639/
https://www.ncbi.nlm.nih.gov/pubmed/35062415
http://dx.doi.org/10.3390/s22020454
Descripción
Sumario:This paper introduces a procedure to compare the functional behaviour of individual units of electronic hardware of the same type. The primary use case for this method is to estimate the functional integrity of an unknown device unit based on the behaviour of a known and proven reference unit. This method is based on the so-called virtual sensor network (VSN) approach, where the output quantity of a physical sensor measurement is replicated by a virtual model output. In the present study, this approach is extended to model the functional behaviour of electronic hardware by a neural network (NN) with Long-Short-Term-Memory (LSTM) layers to encapsulate potential time-dependence of the signals. The proposed method is illustrated and validated on measurements from a remote-controlled drone, which is operated with two variants of controller hardware: a reference controller unit and a malfunctioning counterpart. It is demonstrated that the presented approach successfully identifies and describes the unexpected behaviour of the test device. In the presented case study, the model outputs a signal sample prediction in 0.14 ms and achieves a reconstruction accuracy of the validation data with a root mean square error (RMSE) below 0.04 relative to the data range. In addition, three self-protection features (multidimensional boundary-check, Mahalanobis distance, auxiliary autoencoder NN) are introduced to gauge the certainty of the VSN model output.