Cargando…

Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells

The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dang, Wang, Ruixue, Li, Kui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777648/
https://www.ncbi.nlm.nih.gov/pubmed/35062293
http://dx.doi.org/10.3390/v14010089
_version_ 1784637116673687552
author Wang, Dang
Wang, Ruixue
Li, Kui
author_facet Wang, Dang
Wang, Ruixue
Li, Kui
author_sort Wang, Dang
collection PubMed
description The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathways, which detect and respond to danger signals—extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS–STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity.
format Online
Article
Text
id pubmed-8777648
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87776482022-01-22 Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells Wang, Dang Wang, Ruixue Li, Kui Viruses Article The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathways, which detect and respond to danger signals—extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS–STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity. MDPI 2022-01-05 /pmc/articles/PMC8777648/ /pubmed/35062293 http://dx.doi.org/10.3390/v14010089 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Dang
Wang, Ruixue
Li, Kui
Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title_full Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title_fullStr Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title_full_unstemmed Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title_short Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells
title_sort impaired antiviral responses to extracellular double-stranded rna and cytosolic dna, but not to interferon-α stimulation, in trim56-deficient cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777648/
https://www.ncbi.nlm.nih.gov/pubmed/35062293
http://dx.doi.org/10.3390/v14010089
work_keys_str_mv AT wangdang impairedantiviralresponsestoextracellulardoublestrandedrnaandcytosolicdnabutnottointerferonastimulationintrim56deficientcells
AT wangruixue impairedantiviralresponsestoextracellulardoublestrandedrnaandcytosolicdnabutnottointerferonastimulationintrim56deficientcells
AT likui impairedantiviralresponsestoextracellulardoublestrandedrnaandcytosolicdnabutnottointerferonastimulationintrim56deficientcells